If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+60x-16=0
a = 25; b = 60; c = -16;
Δ = b2-4ac
Δ = 602-4·25·(-16)
Δ = 5200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5200}=\sqrt{400*13}=\sqrt{400}*\sqrt{13}=20\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-20\sqrt{13}}{2*25}=\frac{-60-20\sqrt{13}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+20\sqrt{13}}{2*25}=\frac{-60+20\sqrt{13}}{50} $
| 8z–8=–3z–41 | | 3w+12=8w+22 | | z÷7-8=3 | | -5t=-6t−3 | | -3x-7-x=-39 | | -10−4w=-9w | | -3(m-5)=30 | | -x+10x=-2 | | 8(x-1)+7=5x+3(-2+x) | | 4h=6+7h | | -6(-x-7)=-6x-42 | | 8(x-1)+7=5x+3(-2+X | | -5j=-6j−10 | | -1=12x-9 | | 10=2x-x+6 | | -6m=-4m−10 | | 4(1x-2)+1x=2x+1x-2 | | 30x–64=220 | | 5u−9+5u=8u+1 | | 4z+1=10+7z | | -5x+12=3x+-12 | | -7+4x=15=2x | | 90+(x)+(3x+2)=180 | | 4(3x-4)=64 | | 4(3y-8)+5=117 | | -5-10v=-9v+2 | | 2(x-4)+3x=32 | | 3a-6-2a=1 | | -7u+2=-1−8u | | 3(2+x)-2x=11+2(2+5x) | | 76=6x+2x-4 | | 2w=-6+w |